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Case selection and coding procedures

Sunstein et al. assembled their sample of affirmative action cases by doing a Lexis keyword

search of “affirmative action and constitution or constitutional,” and through a Westlaw

Key Cite search of United Steelworkers of America, AFL-CIO-CLC v. Weber, 443 U.S. 193

(1979), and Regents of University of California v. Bakke, 438 U.S 265 (1978). This resulted

in 162 cases decided between 1980 and 2003. For each of these cases, I rechecked both

that they were indeed affirmative action cases, and the coding of the judges and votes. To

backdate and update the dataset, I performed the same Lexis keyword search, resulting in

27 cases decided between 1971 and 1980, and 15 cases decided after 2003. In addition, some

of the original cases involved non-race-based affirmative action; I excluded all such cases.

For each case, I identified the three judges serving on the panel. I then read the case and

double-checked the coding of each judge’s vote, following the coding procedures set forth in

Sunstein et al. (2006). I coded a decision as “conservative” if a judge voted to strike down

any part of an affirmative action plan as unconstitutional, and “liberal” if a judge upheld the

program in its entirety. In a few cases, the coding of votes did not correspond to the coding

procedures outlined in Sunstein et al. (2006), and I corrected these votes. A small number of

cases involved only gender-based affirmative action; these were not included in my analysis.

I also dropped any cases that were directly on remand from the Supreme Court, since these

are qualitatively different from initial decisions by three-judge panels. For each case, I also

coded the direction of the lower court or agency’s decision, using the same coding protocols.

Note that in this calculation and the discussion of dissents, for the purpose of reliability,
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dissents were coded with respect to the overall coding scheme, not simply based on whether a

judge dissented in a case. For example, if a majority of the panel ruled unconstitutional part

of an affirmative action program, and a judge dissented because she would have overturned

the entire program, all three judges were coded as voting conservatively, and thus no judge

was coded as dissenting.

Information on the race and gender of each judge was gathered from various sources. To

conduct the actual analyses at both the case level and judge-level, I merged the affirmative

action datasets with the appeals court judges attribute database (Gryski and Zuk 2008) and

the district court judges attribute database (Gryski, Zuk and Goldman 2008) (for district

court judges sitting by designation), both of which include judges appointed through 2004. In

a few cases where non-Article III judges sat by designation, or for Article III judges appointed

after 2004, I obtained their biographical information, including race and gender, from History

of the Federal Judiciary (2011). Information on each judge’s appointing president, party of

the appointing president, home state and year of appointment was also gathered from these

sources.

The measure of judicial ideology used in the regression analyses—judge’s conservatism—

are the scores created by Giles, Hettinger and Peppers (2001). They involve using the

common space scores of the appointing president and/or a nominee’s home state senators

(Poole 1998). The procedure is the same for all appeals court judges and district court

judges. The first step is to determine whether senatorial courtesy is in effect. Following

Giles, Hettinger and Peppers (2001), I assume that senatorial courtesy exists whenever one

senator from a nominee’s home state is of the same party as the president. If one (and only

one) senator is of the same party, then the GHP score takes on that senator’s Common

Space score. If both senators are of the home state party, the GHP score is average of their

common space scores. If neither senator is of the president’s party, the GHP score takes on

the president’s common space score. I assume that senatorial courtesy is not in effect for
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judges appointed to the D.C. Circuit, judges who come from U.S. territories, all non-Article

III judges. Thus, for these judges, their GHP scores is the common space score of their

appointing president.

For each judge I coded their appointing president’s common space score, the common

space scores of the judge’s home state senator, and whether senatorial courtesy was in effect

during the judge’s nomination. In some cases, more than two senators served during the

Congress in which a nominee was appointed. Using the “Biographical Directory of the United

States Congress,” I determined which two senators were in office at the time of the judge’s

nomination.1 I then created GHP scores using the above criteria.

Robustness check: sensitivity analysis with Rosenbaum bounds

While matching provides the twin benefits of increasing model transparency and reducing

model dependence in drawing inferences, it does nothing to mitigate the potential problem of

omitted variable bias. Fortunately, Rosenbaum (2002 2002, ch.4) has devised a method for

assessing how sensitive estimated average causal effects are to potential “hidden bias.” Such

bias can take two forms: 1) if two observations with the same observed covariates nevertheless

differed in their probability of receiving the treatment (various assignment probabilities); 2)

an unobserved covariate that might predict the outcome but that was not controlled for

(omitted variable bias).

While Rosenbaum demonstrates that the two types of bias are mathematically equivalent,

because of the quasi-random assignment to panels on the Courts of Appeals, it makes more

sense to conceptualize the potential for hidden bias as arising from an unobserved covariate.

The most likely candidate might be the true differences in judicial ideology between non-black

and black judges, as the existing measures might not sufficiently capture these differences

in ideology. If black judges are sufficiently more liberal than non-black judges, then the

race-based effects uncovered in the analysis could actually be due to ideological differences.

1This can be accessed at http://bioguide.congress.gov/biosearch/biosearch.asp.
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Thus, we can think of the hidden bias as the extent to which black judges would have to be

more liberal than non-black judges (beyond what is measured) to confound the inferences.

The analysis proceeds by defining a sensitivity parameter Γ, which one can think of the

size of the effect on an unobserved covariate u, which is highly predictive of the outcome

(Keele 2011, 8-9). If Γ = 1, then no hidden bias exists. As Γ increases, so does the level of

hidden bias. Of course, the true Γ is unknown; the sensitivity analysis proceeds by asking

how high Γ would have to be before our conclusions about the significance of our estimated

average treatment effects would change. The maximum Γ at which our conclusions would

hold provide bounds on the estimate (and are hence known as “Rosenbaum bounds”). (See

Rosenbaum (2002, ch. 4) for technical details.)

I calculated Rosenbaum bounds for the estimated counter-judge effects based on matched

data (models (5) and (6)).2 The analysis reveals that for the nearest-neighbor and optimal

matching, Γ would have to be as large as 1.9 and 2.0, respectively, before we would conclude

that the estimated counter-judge effects were not statistically different from zero (based on a

one-tailed test). For this to occur, an unobserved variable would have to be both more than

double the probability of being assigned to a panel with a black judge, and nearly perfectly

predict liberal voting in affirmative action cases. Both the quasi-random assignment to panels

on the Courts of Appeals and the theoretical implausibility of a covariate (besides race)

predicting voting so well would seem to make such a scenario highly unlikely. Alternatively,

black Democratic judges would have to be more than twice as liberal as the average non-

black Democratic judge, which also is implausible. Thus, we can conclude that the estimated

counter-judge effects are not sensitive to hidden bias.

2To estimate the bounds, I used the binarysens function in the Rbounds package in R (Keele 2011).
The function implements McNemar’s test statistic, which requires matched pairs—i.e. the same number of
observations in the treatment and control groups after matching. Thus, for the nearest neighbor matching, I
matched without replacement. I confirmed that the estimated average counter-judge effect was statistically
and substantively similar to the results based on nearest-neighbor matching with replacement.
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